

# 一种调频连续波干涉仪激光波长稳定性测量方法

郭媛1,郑刚1\*,盛启明2,聂梦笛1,白浪1,韩园2

<sup>1</sup>西安工业大学光电工程学院,陕西 西安 710021; <sup>2</sup>西安工业大学电子信息工程学院,陕西 西安 710021

摘要 针对调频连续波干涉测量系统中半导体激光光源存在波长漂移的问题,提出了一种基于干涉腔的调频连续 波激光波长稳定性测量方法。首先推导了波长漂移量的测量理论,确定了位移-波长漂移量的变化系数,然后设计 了拍频信号波长漂移量的解调算法,最后搭建了调频连续波干涉腔测量系统并进行了实验验证。结果表明,波长 漂移量的测量分辨率为0.016 pm,波长漂移解算速度达50/s(测量时间为0.02 s),相比光学拍频法和干涉比较法, 测量速度有较大的提高。激光器持续工作1h,测量标准差为0.049 pm,平均中心波长稳定性在0.19×10<sup>-6</sup> 内。 该方法在光纤传感和精密干涉测量领域有较好的应用价值。

关键词 测量;调频连续波;干涉腔测量法;激光器;波长稳定性 中图分类号 TN247 **文献标志码** A

#### doi: 10.3788/CJL202249.0404002

# 1引言

在激光干涉测量技术飞速发展的今天,工业生产 对精密加工、光学检测、装配测量等提出了越来越高 的精度要求<sup>[1]</sup>。如数控机床中部件位移的检测、桥梁 大坝的形变检测和导弹制导系统内部的压力监测等都 需要进行精密的测量。调频连续波(Frequency-Modulated Continuous Wave,FMCW)干涉测量技术<sup>[2-4]</sup> 具有抗干扰能力强、测量精度高和能够实现距离、位 移、温度等多物理量的测量等优点,而激光波长作为 干涉测量的基准直接影响测量精度<sup>[5]</sup>,所以测量激光 波长稳定性对于分析干涉测量精度具有重要的作用。

在激光干涉测量系统中,分布反馈(Distributed Feedback,DFB)激光器温控系统的波动、驱动电流的 漂移、激光器自身的不完全耦合以及光路或电路器件 老化等问题造成激光器波长漂移<sup>[6]</sup>,大多学者从优化 激光器内部结构和电路设计两方面来减小激光波长 漂移。为了明确波长漂移量,学者们研究了激光漂移 量的测量。辛国锋等<sup>[7]</sup>以透镜、半导体激光器与体布 拉格光栅构成外腔激光器,使激光器工作波长稳定在 体布拉格光栅的布拉格波长处。唐七星等<sup>[8]</sup>基于改 进的时域相关光谱修正算法,将系统稳定性评估中的 波长漂移标准偏差修正为 0.1443 nm。Kim 等<sup>[9]</sup>利 用光纤中受激布里渊散射引起的斯托克斯波随波长 变化的频移,测量了半导体激光器的中心波长漂移, 长期波长稳定性(>4 h)为 10 pm。

目前,激光波长稳定性测量方法按物理现象可 分为光学拍频法、干涉比较法和使用特定波长敏感 材料特性的方法等<sup>[10]</sup>。光学拍频法是利用快速光 电探测器测量参考激光器和测试激光器之间的频率 差,从而得出波长,该方法的相对测量分辨率达 1×10<sup>-14</sup>~1×10<sup>-9</sup>,测量时间为0.1~1s;干涉比 较法通过改变干涉仪中的光程差,观察参考激光和 测试激光干涉条纹的相位变化以测量波长,该方法 的相对测量分辨率可达1×10<sup>-8</sup>,测量时间为1 s~ 15 min;使用特定波长敏感材料特性的方法的相对 测量分辨率达1×10<sup>-7</sup>,测量时间为0.1~1 s。上 述方法均有较高的波长测量分辨率,但需要参考激 光器,增加了测量设备的成本。而 FMCW 干涉腔 测量法具有测量时间短、不需要参考激光器、光学结 构简单、成本低、测量分辨率较高的优势。

为了实现激光波长漂移量的测量,本文提出了 一种利用 FMCW 干涉腔测量激光波长稳定性的新 方法。首先,基于调频连续波干涉测量原理,推导了

收稿日期: 2021-05-26; 修回日期: 2021-06-25; 录用日期: 2021-07-08

通信作者: \*zhengg@xatu.edu.cn

#### 研究论文

#### 第49卷第4期/2022年2月/中国激光

激光波长稳定性测量理论;再对干涉腔作保温和减 振处理,确保了位移-波长漂移量变化系数的准确 性;然后,设计了拍频信号波长漂移解调算法,搭建 了FMCW干涉腔测量系统,验证了该测量方法的 有效性,并结合实验结果分析了测量误差;最终,确 定了FMCW干涉测量系统光源的稳定性,达到了 提高激光波长漂移测量分辨率和响应速度的目的。

## 2 基本原理

光学调频连续波即频率(或角频率)受到连续调

制的光波,调制波波形是周期函数。本文选择锯齿 波调制波形。调频连续波激光干涉技术的原理是通 过向待测目标发射频率连续调制的激光,光束经过 光纤环行器出射到法布里-珀罗(Fabry-Perot,F-P) 腔的前端面(即半反半透参考镜)上,其中一部分经 参考镜反射作为参考光,另一部分透射至干涉腔后 端面,经目标全反镜反射后作为信号光,与参考光相 遇产生干涉拍频信号,通过对拍频信号进行解调,可 实现目标位移、距离、压力、液位、速度、振动等物理 量的测量。FMCW干涉光路图如图1所示。



图 1 FMCW 干涉光路

Fig. 1 FMCW interferometric optical path

激光器驱动电路产生的锯齿波调制信号与经信 号采集电路转化后的拍频信号的波形如图 2 所示, 其中 *I*(*t*)表示参考光与信号光发生干涉时合成场 的光强。



拍频信号的频率 v<sub>b</sub>为

$$v_{\rm b} = \frac{\alpha O_{\rm P}}{2\pi c} = \frac{\Delta v v_{\rm m} O_{\rm P}}{c}, \qquad (2)$$

式中 α 为角频率的调制率。

拍频信号的初相位 φ<sub>b0</sub> 为

$$\varphi_{b0} = \frac{\omega_0 O_P}{c} = k_0 O_P = \frac{2\pi O_P}{\lambda_0}, \qquad (3)$$

式中:光程差为 $O_P = 2nL$ ,其中L为F-P 腔长,n为 腔内折射率; $k_0$ 为真空中的中心传播常数; $\omega_0$ 为调 制周期中心位置的角频率。

由(3)式可知,当 O<sub>P</sub> 改变一个波长时,拍频信 号会移动一个周期。初相位 φ<sub>b0</sub> 的变化反映了波形 动态的移动情况,初相位的变化主要用于相对物理 量的测量,且初相位与中心波长有关,波长的漂移直 接影响测量的精度。

根据微分定理对拍频信号初相位公式进行推导,发现在 O<sub>p</sub> 恒定下,平均中心波长漂移引起初相 位的移动,进而导致形式上的"位移"。

$$\mathrm{d}\varphi_{b0} = -\frac{2\pi O_{\mathrm{P}}}{\lambda_{0}^{2}} \mathrm{d}\lambda_{0} = -\frac{4\pi nL}{\lambda_{0}^{2}} \mathrm{d}\lambda_{0}, \qquad (4)$$

$$\mathrm{d}\lambda_{0} = -\frac{\lambda_{0}^{2}}{4\pi nL}\mathrm{d}\varphi_{b0}\,,\qquad(5)$$





每个调制周期内的拍频信号为

$$I(O_{\rm P},t) = I_{\rm 0} \left[ 1 + V \cos\left(\frac{2\pi\Delta v v_{\rm m} O_{\rm P}}{c} t + \frac{2\pi}{\lambda_{\rm 0}} O_{\rm P}\right) \right],$$
(1)

式中:*I*<sub>0</sub>为拍频信号的平均光强;V为拍频信号的 对比度;Δv 为光学频率的调制范围;v<sub>m</sub>为调制信号

316L 不锈钢管作为 F-P 固定腔,并对 F-P 腔作保温和 减振处理,以减小周围环境温度波动对 F-P 腔的影响。

在调频连续波激光干涉测量系统中,DFB激光

器以其调制速率高、直接电流调制、调制范围大、尺

寸小以及成本低的优点成为 FMCW 干涉系统的最

佳光源,根据激光波长稳定性测量理论,本文提出了

FMCW 干涉腔测量法

$$\mathrm{d}L = \frac{\lambda_0}{4\pi} \mathrm{d}\varphi_{\mathrm{b0}} \,. \tag{6}$$

联立(5)、(6)式,有

$$\mathrm{d}\lambda_{\scriptscriptstyle 0} = -\frac{\lambda_{\scriptscriptstyle 0} \,\mathrm{d}L}{nL} = K \,\mathrm{d}L \,, \qquad (7)$$

式中 K 为位移-波长漂移量的变化系数。当 F-P 腔 的腔长 L 恒定时,干涉光谱的中心波长漂移量与位 移变化量呈线性关系。故解调波长漂移量的前提是 保证 F-P 腔的腔长不变,本文采用壁厚为 6 mm 的



3

#### 图 3 测量系统示意图

Fig. 3 Schematic of measurement system

由于激光器波长受电流和温度的影响,对 DFB 激光器驱动电流<sup>[11]</sup>和工作温度<sup>[12]</sup>进行控制,以提 高激光器波长稳定性和光信号质量。测量方案的原 理为激光器发射锯齿波调制信号,从光纤环行器出 射至被黄铜管保护的准直器中,再经准直器出射至 F-P腔中,然后对整个不锈钢管作保温处理,光信号 在 F-P腔的前端面发生干涉,干涉产生的拍频信号 携带有激光波长漂移信息,通过光电探测器将光信 号转换成电信号,电信号经放大滤波电路、芯片的模 拟数字转换(ADC)和算法处理后,解调得到波长漂 移量。

激光波长漂移量的解调算法流程如图 4 所示。 首先,对锯齿波调制下的干涉拍频信号进行幅值归 一化处理,以克服拍频信号的幅值受电流线性调制 的影响<sup>[13]</sup>;再根据(2)式并利用鉴频法<sup>[14]</sup>实现 F-P 腔腔长的测量,以明确位移-波长漂移量的变化系 数;然后,通过反余弦查表法鉴别拍频信号的固定点 相位,得到位移变化量;最后,根据前文推导的激光 波长稳定性与位移变化量的关系,实时采集波长漂 移量。

具体步骤如下。

1)算法以边调制边采集的方式进行处理。采集 到一个调制周期内的拍频信号后,先选取拍频信号 中间信噪比较高的有效拍频波形,30%~80%点数 区间内的波形为有效处理对象,利用冒泡法找出拍 频信号有效区间中的极值点大小和位置。

2)激光器的电流调制使拍频信号伴随有强度调制,且参考光与信号光之间的对比度使拍频信号的极小值不为零,所以将拍频信号归一化为标准余弦信号,便于鉴别相位,即

$$\varphi = \arccos\left(\frac{Y-B}{A}\right),\tag{8}$$

$$B = \frac{p_{e} + v_{a}}{2}, \qquad (9)$$

$$A = \frac{p_{\rm e} - v_{\rm a}}{2}, \qquad (10)$$

式中:φ 为余弦信号的相位;Y 为实际拍频信号的强 度值;p。为信号标准化后的峰值;v。为信号标准化 后的谷值;B 为信号标准化后的偏置值;A 为信号 标准化后的幅值。

3)为了提高相位鉴别精度,在有效区间内均匀 选取多个固定点进行鉴相,以解算平均相位,从而减



图 4 波长漂移量解调算法流程图



小鉴相算法的随机误差。

4)为了提高算法速度,将180°相位细分为2048 份以形成反余弦表,每份的最小相位分辨率为<sup>180°</sup><sub>2048</sub>= 0.0879°,利用反余弦查表法计算固定点相位,通过 获取相位正周期数和小数部分相位,计算相位的变 化量。根据(6)式可知,假设激光器的中心波长为 1550 nm,相位变化360°时,位移变化775 nm,则相 位分辨率0.089°对应的理论位移分辨率约为 0.189 nm,在算法中用整型变量进行计算,可实现 0.1°的相位测量分辨率。

5)根据相位变化量-位移-波长漂移量之间的线 性关系,实现波长漂移量的测量。算法位移测量分 辨率为1 nm<sup>[15]</sup>,由(7)式可知波长漂移量的测量分 辨率为0.016 pm。

### 4 实验验证与误差分析

为了验证 FMCW 干涉腔测量波长稳定性的有效性和准确性,搭建了实验装置,如图 5 所示。整个测量系统主要包括中心波长为 1579.152 nm 的DFB激光器、工作距离为 300 mm 的准直器、光纤环行器、316L 不锈钢管制作的 F-P 腔(壁厚为 6 mm, 腔长为 100.000 mm)、响应度为 0.85 mA/mW 的PIN(Positive-Intrinsic-Negative)铟镓砷光电探测器及以芯片为核心的信号处理系统,该系统包含激

光器温度控制模块。



图 5 实验装置 Fig. 5 Experimental device

在实验中,激光器电流调制频率设置为 20 kHz,平均驱动电流为60 mA,调制率为 400 mA/ms,每个周期的采样点数为140,采样率 为2.8 MHz,激光器设定温度为24.8 ℃。调制频 率为解算波长漂移量的速度,即1s输出20000 个 波长漂移量数据。在实际测量中,为了降低数据 波动以及方便观察,人为分频降低速度,算法累计 计算400 次输出一次数据,测量速度为1s输出50 个波长漂移量数据,即测量时间为0.02 s。同时,

#### 研究论文

对 F-P 腔进行保温和减振处理,以减小环境温度 变化和振动对 F-P 腔的影响,测试 F-P 腔的保温稳 定性,1 s 采集 1 个位移数据,测试 30 min,如图 6 所示。





由图 6 可知, F-P 腔的位移波动在±3 nm 内, 表明了 F-P 腔的保温处理效果良好。

#### 4.1 干涉测量法的验证分析

通过计算可知,当平均中心波长 $\lambda$ =1579.152 nm, 腔长 L = 100 mm,位移从 - 20 nm 累计变化到 20 nm 时,理论波长漂移量如图 7 所示。结果表明, 理论波长漂移量在±0.32 pm 内。



利用鉴频法测量 F-P 腔长,在测量 F-P 腔长的 误差范围(99.942~100.058 mm)内采集激光波长 漂移量。测量时,三个腔长分别为 99.942,100.000, 100.058 mm,每秒输出 50 个数据,测量结果如图 8 所示。

结果表明,在不同腔长下,波长漂移量的标准差 分别为 0.05812,0.05809,0.05806 pm,可见腔长的



cavity lengths

测量误差对激光波长稳定性测量的影响很小,可忽略不计。将图 7 与图 8 作对比分析,实际激光波长 漂移量在 0.348 pm 内,即激光波长稳定性为 0.23×10<sup>-6</sup>,验证了采用干涉腔测量法测量 DFB 激 光器波长稳定性的有效性。

#### 4.2 激光器中心波长的稳定性测试

使用光谱仪(波长范围为 0.6~1.7 μm,分辨率 为 20 pm)测量激光器平均中心波长,10 min 记录一 次数据,测量时间为 1 h,如图 9 所示。可知数据刷 新率为 1/s,宏观上中心波长很稳定,事实上是分辨 率不足以测出激光波长漂移量,证明了所提 FMCW 干涉腔测量方法在高精度干涉测量中具有重要的实 际意义。利用该方法测量激光器平均中心波长的 稳定性,1 s输出 50 个数据,每隔 100 个数据取 1 个数据作为波长漂移量,测量时间为 1 h,如图 10 所示。

结果表明,激光器平均中心波长稳定性为 0.19×10<sup>-6</sup>,测量标准差为0.049 pm,激光波长漂





#### 研究论文



#### interferometric cavity

移量的实际测量分辨率为 0.016 pm,则相对测量分 辨率为 1.02×10<sup>-8</sup>。与现有的激光波长测量方法 进行对比,结果如表 1 所示。四种测量方法的相对 测量分辨率均优于 1×10<sup>-7</sup>,但 FMCW 干涉腔测量 法大大缩短了测量时间,表明该方法实时方便,测量 分辨率高和测量速度快,同时证明了激光器具有良 好的稳定性。温控和电流稳定下的激光器具有良好 的重复性和稳定性。

表 1 FMCW干涉腔测量法与现有测量法的性能对比

| Table 1 | Performance                  | comparison |        | amor  | ig FN  | FMCW |  |
|---------|------------------------------|------------|--------|-------|--------|------|--|
|         | interferometric              | cavity     | measur | ement | method | and  |  |
|         | existing measurement methods |            |        |       |        |      |  |

| Measurement method                                                 | Relative<br>measurement<br>resolution                        | Measuring<br>time |
|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------|
| Optical beating method                                             | $\substack{\pm 1 \times 10^{-9} - \\ \pm 1 \times 10^{-14}}$ | 0.1–1.0 s         |
| Interference comparator                                            | $1 \times 10^{-8}$                                           | 1 s-15 min        |
| Method using specific wavelength-<br>sensitive material properties | $1 \times 10^{-7}$                                           | 0.1-1.0 s         |
| FMCW interferometric cavity measurement method                     | $1.02 \times 10^{-8}$                                        | 0.02 s            |

# 5 结 论

提出了一种新的 FMCW 干涉腔测量激光波长 稳定性的方法,利用 FMCW 干涉高精度、高分辨 率、测量实时快速的优势,解决了激光波长稳定性的 量化问题。通过推导干涉腔测量法理论,设计了波 长漂移量解调算法,实现了激光波长漂移量的实时 测量,有效提高了波长漂移量的测量分辨率。实验 结果表明,该方法测量分辨率为 0.016 pm,测量时 间为 0.02 s,相比光学拍频法和干涉比较法,缩短了 测量时间。激光器在1h内表现出0.19×10<sup>-6</sup>的 平均波长稳定性。此稳定性优于市场上大部分双频 激光器,这对提高FMCW干涉测量的精度具有重 要意义,在激光波长稳定性测量领域中有较好的应 用价值。

#### 参考文献

- Zhang J. Study on nonlinear rectification technology of LFM DFB semiconductor laser[D]. Xi'an: University of Chinese Academy of Sciences, 2019.
   张健. 线性调频 DFB 半导体激光器的非线性矫正技 术研究[D]. 西安:中国科学院西安光学精密机械研 究所, 2019.
- [2] Zheng J. Optical frequency-modulated continuouswave (FMCW) interferometry [M]. New York: Springer-Verlag, 2005.
- [3] Zheng J. Analysis of optical frequency-modulated continuous-wave interference [J]. Applied Optics, 2004, 43(21): 4189-4198.
- [4] Zheng J. Single-mode birefringent fiber frequencymodulated continuous- wave interferometric strain sensor[J]. IEEE Sensors Journal, 2010, 10(2): 281-285.
- [5] Cai Y D, Feng B K, Sang Q, et al. Real-time correction and stabilization of laser diode wavelength in miniature homodyne interferometer for long-stroke micro/nano positioning stage metrology [J]. Sensors, 2019, 19(20): 4587.
- [6] de Marcellis A, Ferri G, D'Amico A, et al. A fullyanalog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations[J]. IEEE Sensors Journal, 2012, 12 (5): 1377-1383.
- [7] Xin G F, Cheng C, Qu R H, et al. Study of spectral characteristics of external-cavity semiconductor laser a volume Bragg grating [J]. Acta Optica Sinica, 2007, 27(10): 1821-1826.
  辛国锋,程灿,瞿荣辉,等.体布拉格光栅外腔半导体激光器光谱特性研究 [J].光学学报, 2007, 27 (10): 1821-1826.

[8] Tang Q X, Zhang Y J, Chen D, et al. Research on wavelength shift correction algorithm for tunable laser absorption spectrum [J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3328-3333.
唐七星,张玉钧,陈东,等.调谐激光吸收光谱波长 偏移修正算法研究[J].光谱学与光谱分析, 2018, 38 (11): 3328-3333.

[9] Kim J, Park S, Choi Y K, et al. Wavelength stabilization of a semiconductor laser using wavelength-dependent frequency shift by stimulated Brillouin scattering[J]. Optical Engineering, 2016, 55 (12): 120501.

- [10] Dobosz M, KoŻuchowski M. Overview of the laserwavelength measurement methods [J]. Optics and Lasers in Engineering, 2017, 98: 107-117.
- [11] Wu T, Pang T, Tang Y Q, et al. Frequency compensation based pump laser drive circuit with high stability[J]. Chinese Journal of Lasers, 2019, 46(8): 0801010.
  吴涛, 庞涛, 汤玉泉, 等. 基于频率补偿的高稳定抽 运激光器驱动电路[J]. 中国激光, 2019, 46(8): 0801010.
- [12] He Q X, Liu H F, Li B, et al. Multi-channel semiconductor laser temperature control system [J]. Acta Optica Sinica, 2017, 37(11): 1114002.
  何启欣,刘慧芳,李彬,等. 多通道半导体激光器温 控系统[J]. 光学学报, 2017, 37(11): 1114002.
- [13] Zhang X X, Zheng G, Jing L Q, et al. A method for

amplitude normalization of frequency modulated continuous wave interference signal: CN109870677A [P]. 2019-06-11.

张雄星,郑刚,井李强,等.一种调频连续波干涉信 号幅度归一化方法: CN109870677A[P]. 2019-06-11.

- [14] Jing L Q, Zheng G, Sun B, et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique [J]. Chinese Journal of Lasers, 2019, 46(12): 1204001.
  井李强,郑刚,孙彬,等.基于调频连续波干涉技术 的运动目标距离测量[J].中国激光, 2019, 46(12): 1204001.
- [15] Zhang X X, Zheng G, Gao M, et al. A fast phase discrimination method for FMCW interference signal: CN110646789A[P]. 2020-01-03.
  张雄星,郑刚,高明,等.一种调频连续波干涉信号的快速鉴相方法: CN110646789A[P]. 2020-01-03.

# New Method for Measuring Laser Wavelength Stability by Using Frequency-Modulated Continuous Wave Interferometer

Guo Yuan<sup>1</sup>, Zheng Gang<sup>1\*</sup>, Sheng Qiming<sup>2</sup>, Nie Mengdi<sup>1</sup>, Bai Lang<sup>1</sup>, Han Yuan<sup>2</sup> <sup>1</sup>School of Opto-Electronic Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China; <sup>2</sup>School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China

#### Abstract

Objective With the rapid development of laser interferometry technologies, the industrial production has put forward higher accuracy requirements for precision machining, optical detection, assembly measurement, etc. For example, the displacement detection of components in computer numerical control machine tools, the deformation detection of bridges and dams, and the internal pressure monitoring of missile guidance all need precise measurements. As the benchmark of interferometry, laser wavelength directly affects measurement accuracy, thus measuring the stability of laser wavelength is of great significance for analyzing the accuracy of interferometry. According to the physical phenomena, the existing laser wavelength stability measurement methods can be divided into optical beating method, interference comparator method, and specific wavelength sensitive material characteristics based method. These methods have a high wavelength measurement resolution, but need a reference laser, which inevitably increases the cost of a measuring equipment. Frequency-modulated continuous wave (FMCW) interferometry technology has the advantages of strong anti-interference ability, high measurement accuracy, and the ability to measure distances, displacements, temperatures and other physical quantities. This paper proposes a frequency-modulated continuous wave interferometric cavity measurement method, which has the advantages of short measurement time, no reference laser, simple optical structure, low cost, and high measurement resolution. This method has high application value in the fields of optical fiber sensing and precision interferometry.

**Methods** In order to realize the measurement of laser wavelength drifts, a method of frequency-modulated continuous wave laser wavelength stability measurement based on interferometric cavity is proposed. Firstly, the measurement theory of wavelength shifts is deduced. When the cavity length is constant, the shift of the initial phase is caused by the average center wavelength shift, which leads to the "displacement" in the form. Second, the interferometric cavity is insulated and damped to reduce the influence of ambient temperature fluctuation on the

Fabry-Perot (F-P) cavity, the F-P cavity length is measured by the frequency discrimination method, and the displacement-wavelength shift coefficient is determined. Third, the inverse cosine look-up table method is used to identify the phase of the fixed point of the beat signal to obtain the displacement variation. According to the linear relationship between the displacement and the laser wavelength shift, the wavelength shift is collected in real time. Finally, the measurement system of FMCW interferometric cavity is built for experimental verification and error analysis.

**Results and Discussions** In order to verify the validity and accuracy of wavelength stability measured by the FMCW interferometric cavity, an experimental device is set up (Fig. 5). The insulation stability of the F-P cavity is tested (Fig. 6). The displacement fluctuation of the F-P cavity is within  $\pm 3$  nm, which shows that the heat preservation treatment effect of the F-P cavity is good. The laser wavelength drift is collected within the error range (99.942–100.058 mm) of the F-P cavity length measured by the frequency discriminator method (Fig. 8). The standard deviations of laser wavelength drifts are 0.05812, 0.05809, and 0.05806 pm, respectively, under different cavity lengths. It can be seen that the measurement error of cavity length has no obvious effect on the measurement of laser wavelength stability and can be ignored. The average center wavelength stability of the laser is measured by the FMCW interferometric cavity (Fig. 10). The results show that the average center wavelength stability of the laser is  $0.19 \times 10^{-6}$ , the measurement standard deviation is 0.049 pm, and the actual measurement resolution of the laser wavelength shift is 0.016 pm. Therefore the relative measurement resolution is  $1.02 \times 10^{-8}$ . The comparison with the existing laser wavelength measurement methods (Table 1) is conducted. The relative measurement resolution of four methods is better than  $1 \times 10^{-7}$ , but the FMCW interferometric cavity measurement method greatly shortens the measurement time. It shows that the proposed method is convenient in real time, high in measurement resolution, and fast in measurement speed. Moreover, the laser under temperature control and current stability has good repeatability and stability.

**Conclusions** In this paper, a method for measuring laser wavelength stability with the FMCW interferometric cavity is proposed, which uses the advantages of high precision, high resolution, and real time measurement of FMCW interference to solve the quantification problem of laser wavelength stability. By deducing the theory underlying the interferometric cavity measurement method, the demodulation algorithm of wavelength drifts is designed to realize the real time measurement of laser wavelength drifts and effectively improve the measurement resolution of wavelength drifts. The experimental results show that the measurement resolution of wavelength shift of the proposed method is 0.016 pm, the calculation speed of wavelength shifts is up to 50/s, and the measurement time is 0.02 s. Compared with those of the optical beating method and interference comparator method, the measurement speed is greatly improved. The laser shows an average wavelength stability of  $0.19 \times 10^{-6}$  within 1 h. This stability is better than that of most dual-frequency lasers on the market . The proposed method is of great significance to the research on improving the accuracy of FMCW interferometry and has good application value in the field of laser wavelength stability measurements.

**Key words** measurement; frequency-modulated continuous wave; interferometric cavity measurement method; laser; wavelength stability